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Predictive Modeling

« “Uses mathematical tools and statistical
algorithms to examine and determine
patterns in one set of data. . .

* ... Inorder to predict behavior in
another set of data

* Integrates well with iIn-memory-data and
data visualization”



Top 10 Use Cases

Major Giving

1. Attachment Scores 5. Segment Non-Donors

2. Expected Ask Values (most attractive to solicit)

3. Ranked List for a Program 6. Ask Amounts

4. Planned Giving /. Best Appeal Messages
Other

8. Patient Potential (from patient encounters)
9. Event Attendance (who is likely to attend)
10. Ad Hoc Hypothesis Testing

FADVIZOR Source: ADVIZOR Fundraising Clients



Predictive Modeling Basics
Target

« Behavior that you want to examine

- Classification Model: Target = a group to be compared with the base
population (“selected subset”)

« Regression Model: Target = a numeric field in your data

Base Population

« Group that has the potential to have the same experiences and
behavior as the Target

Explanatory Factors

« Factors that might explain why the Target is different than other
entities in the Base Population; or what drives the variation

- Data fields from your various data tables

Causation (# Correlation)



Iterative Process
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MAJOR GIVING

* Question(s) to answer

« Composite score or separate factors
* One model or several

 How to prep the data

« Setting up and building the model

¥

ATTACHMENT MODEL



Getting Started

* What question are you trying to answer?
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One Model or Several
« Can everybody have the same experience?

(// ¥
7(My Univers!
| y // ! f 7 U .
\ .
Eng neeri _
Dol (oD (2 -
WMod lTL Be -H\ou;k'f' P;l! I /elri:;”7
3y Be 5ens.'ble/E’i” :?

'ADVIZOR




What about the Data?

« What factors might influence undergraduate alums to give?
* Who else has those characteristics?
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What about the Data?

« What factors might influence undergraduate alums to give?
* Who else has those characteristics?
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MAJOR GIVING:
ATTACHMENT MODEL



Attachment Model

Question: What causes some people to give at or above their
capacity? Who else looks like that?

Target: undergraduate alums who have given over $100k
° all undergraduate alums rated $100k+

Explanatory Factors: things that indicate opt in interest

« Committees, events, reunions, giving, newsletter clicks, student sports,
student activities, etc.

Algorithms Used: Regression in ADVIZOR

* Point-and-click interface

* Need Excel skills; no stats degree or database query skills required:
« Data prep in integrated “in-memory pool”
« Combinations, aggregation, binning, cross-table calculations
« Test, iterate and explore using interactive visualization
* Models complete rapidly — typically .2 to 4 minutes

FADVIZOR Example only. Will vary by fundraiser.



Build an Attachment Model
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Examine Model Results
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Put your Model In Play
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http://localhost/ADV/Projects/Demo/ProspectID-Webinar.aspx

Select High Capacity and Highly Engaged
Prospects — 1,527 people
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500 Cousins, Augustina 54,477,821
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269 out of the 1,527 are Not
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Wilson, Jonah 53275250

Prospect Count

Statistic 1D Number
Selected 1,527

Kr

FADVIZOR




Those 269 are all across the country; cluster of 24 In
San Francisco Bay area — maybe a dinner out there?
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24 In Bay Area: none have been on a
committee =» key cultivation step

Color By: rating

B3 Prospectin o 4
& — O ‘ localhost
\Id
‘I'| I,l’ ‘I |I| |I| [Z]replace = ‘J c Color Scale: | cbRating v
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Attachment Score Details
1D Number Mame Rating TLG ¥ Aftachment 5... W Aftachment Group

42385 Prado, David 05 - 5500K - 999K 4,051 028 30-Owner
40,435 Eliason, Abdul 05 - $500K - $999K 8,820 0.26 .20- Highly Engaged
432016 Eckstein, Bethann 05 - $500K - 999K 80,934 0.25 20-Highly Engaged
42880 Hoyt, Deborah 05 - 5500K - $999K 2,065 0.25 20-Highly Engaged
76,254 Todt Eusebio 05 - 5500K - $999K 19,113 0.25 .20- Highly Engaged
49240 Totedo, Cinthia 04 - 51V - 54.9M 47,967 0.25 .20-Highly Engaged
238591 Leone, Candi 05 - $500K - $999K 9,650 0.25 20-Highly Engaged
117,017 Chen, Virginia 03 - 55M - $9.9M 1,347,511 0.25 .20- Highly Engaged
58,987 Angle, Awilda 04 - 1M - 54,90 54,741 0.25 .20-Highly Engaged
55042 Gordon, Glinda 04 -51M - 54.9M 27,805 0.25 20-Highly Engaged
52591 Gold, John 05 - 5500K - 5990K 20,226 023 20-Highly Engaged
238,806 Galliers, Lucia 05 - 5500K - 5999K 5,280 0.22 .20-Highly Engaged
40,885 Hall, Brittany 05 - B500K - 5999K 3,990 0.21 .20-Highly Engaged
" 22T ATT Dykstra, Hanna 05 - 5500K - 5999K 5,465 0.219 .20-Highly Engaged
52903 Mallikarjun, Georgie 03 -55M-59.9M 838,961 0.21 .20-Highly Engaged
70521 King, Denisha 05 - 5500K - 990K 29,580 0.21 .20-Highly Engaged
239615 Krush, Elba 05 - §500K - 5999K 3,435 0.20 .20-Highly Engaged
75,007 Riley, Natalie 03 -55M-59.9M 4,740 0.20 .20-Highly Engaged
228874 Hurka, Samantha 05 - $500K - 5999K 11,538 0.20 .20- Highly Engaged
237,832 Miller, Daisey 01 - $50M or more 210,720 0.19 .20- Highly Engaged
85914 Ejvr, Adrian 05 - 5500K - 5990K an2 0.19 .20- Highly Engaged
72614 Chan, Vern 05 - 5500K - 5999K 5450 0.19 .20- Highly Engaged
124 421 Bechtoldt, Carlos 04 - 51M - 54.9M 1,488 0.19 20- Highly Engaged
52,582 Cloonan, Karen 05 - 5500K - 999K 6,102 0.18 .20-Highly Engaged
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ANNUAL GIVING



Segment Non-Donors

Study non-donors who have been recently acquired. Who are they? What
are their characteristics? Who else has similar characteristics??

Look Like our Donors

For Graduates L5Y: Women, live
in New York City, have degrees of
MACC, JD, PHARMD, CERT,
BBA, or BSHP*

For Graduates older than L5Y:
Married, live in Virginia, Texas, or
New York City, have Professional
Degrees such as JDs, MBAs,
BBAs, event attendees*

Won't Give

. *Score based on weighted combination of all
Might Give of these factors.
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Focus on Successful Appeals ...

- Typically 10 to 15% of the appeals work

« But teams often send everybody everything

« Should measure and then focus on what works

* And send primarily to “Look Like our Donors” segment
» Successful appeals are generally:

« For example, from a class agent who knows the prospect
» Personalized letter or call

« For example, healthcare message to medical professionals ...

... sport message to alum who always clicks on sports article in
newsletter

* Etc.




... With 6 to12 Touches per Year

Goal: send each entity in target segment 6 to 12
effective appeals per year

Problem: often “over touch” with unsuccessful

appeals ...
 We have seen 50+ to over half the non-donor base
* Heavy emalil

... and “under touch” with successful appeals

- At same client only 1 to 2 successful appeal touches per year to
people in target segment because sent to too many other people

higher yield appeals generally cost more ...

... SO segmenting the non-donor base to focus on
“look like my donors” is important

e Substantial improvement potential = next page



Northern llliNoIS @u1s) @

Results:

All major mail solicitations were sent to less people
and made more money each of the last three fiscal
years

Holiday Cards revenue tripled in one year while
sending 5k less pieces (25% less)

Revenue up over 70% since 2012

Average gift size up 60%

Acquired 17% more new donors in FY15 than FY14
First time donor retention up from 23% to 30%

Webinar on this case study at: (11/15)



Predictive Modeling — Summary

* Focus on Answering Questions
. , your team knows the data best

« Start simple; don’t over complicate

o “A simple model completed now is better than a complex
model that takes forever”

 |terate and evolve, experiment, use common
sense

* Use the data that you have; don’t go crazy with
social media and other “extras’

o In your Data Discovery / Reporting
system so that it updates and you can keep using it



I —

.

Discussion, Q&A

Follow-up: Doug.Cogswell@AdvizorSolutions.com, +1.630.971.5201

ly
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